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Abstract. Motivated by the recent measurement of proton-proton spin-correlation parameters up to
2.5GeV laboratory energy, we investigate models for nucleon-nucleon (NN) scattering above 1GeV. Signa-
tures for a gradual failure of the traditional meson model with increasing energy can be clearly identified.
Since spin effects are large up to tens of GeV, perturbative QCD cannot be invoked to fix the prob-
lems. We discuss various theoretical scenarios and come to the conclusion that we do not have a clear
phenomenological understanding of the spin dependence of the NN interaction above 1GeV.

PACS. 13.75.Cs Nucleon-nucleon interactions (including antinucleons, deuterons, etc.) – 24.70.+s Polar-
ization phenomena in reactions

1 Introduction

The force between two nucleons has been studied for many
decades. Based upon the Yukawa idea [1], meson theories
were developed in the 1950s [2–5] and ’60s [6,7]. How-
ever when, in the 1970s, quantum chromodynamics (QCD)
emerged as the generally accepted theory of strong inter-
actions, those “meson theories” were demoted to models
and the attempts to derive the nuclear force in fundamen-
tal terms had to start all over again.

The problem with a derivation from QCD is that this
theory is nonperturbative in the low-energy regime charac-
teristic for nuclear physics and direct solutions are impos-
sible. Therefore, QCD-inspired quark models were fash-
ionable for a while —in the 1980s [9]. However, since they
are —admittedly— just another set of models, they do
not represent any progress in fundamental terms. If one
has to resort to models anyhow, then one can, as well,
continue to use meson models: they are relatively easy
to build, the predictions are quite quantitative, and the
underlying picture is very intuitive: mesons of increasing
masses are exchanged, creating contributions of decreas-
ing ranges until the range is sufficiently short such that it
may be considered irrelevant for nuclear-physics purposes.

A certain breakthrough occurred, when the effective
field theory (EFT) concept was introduced and applied
to low-energy QCD [10]. Based upon these ideas, Wein-
berg showed in 1990 [11], that a systematic expansion of
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the nucleon-nucleon (NN) amplitude exists in terms of
(Q/Λχ)

ν , where Q denotes a generic nucleon momentum,
Λχ ≈ 1GeV is the chiral symmetry breaking scale, and
ν ≥ 0. This is known as chiral perturbation theory (χPT)
which is equivalent to low-energy QCD.

Weinberg’s initial work [11] created a lot of interest
and activity [12–14] that has been going on now for more
than a decade [15–18]. As a result, we have today a rather
precise understanding of the nuclear force in terms of
χPT [19–21]. However, the energy range appropriate for
χPT is very limited; after all, χPT is a low-momentum
expansion, good only for momenta Q ¿ Λχ ≈ 1GeV.
The most advanced calculations to date go to fourth or-
der [20,21] at which NN scattering can be described sat-
isfactorily up to lab. energies (Tlab) of about 300MeV.
For higher energies, more orders must be included. How-
ever, since the number of terms increases dramatically
with each higher order (cf. ref. [20]), χPT will be unprac-
tical and unmanagable around order five or six. It is, thus,
safe to state that χPT is limited to Tlab < 0.5GeV.

There is, of course, a need to understand NN scat-
tering also above 0.5GeV. Naively, one might expect that
perturbative QCD (pQCD) should be useable above the
scale of the low-energy EFT. Unfortunately, this is not
true. Energies of the order of 1GeV are far too low to in-
voke pQCD. Thus, in the energy range that stretches from
about 0.5GeV to, probably, tens of GeV, we are faced
with the dilemma that we have presently no calculable
theory at our disposal. In principle, it should be possible
to apply lattice QCD in this energy regime. However, such
calculations are not available, at this time. They are an
interesting prospect for the future.
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Table 1. Meson parameters. (J , P , and I denote spin, parity, and isospin of mesons.)

Meson JP I mα (MeV)(a) g2/4π or f2/4π(a) Λα (GeV)(a)

NNα vertices

π 0− 1 138.03 14.4(b) 1.6 (1.1–2.1)

η 0− 0 548.8 2.0 (1.0–3.0)(b) 1.5 (1.3–1.7)

ρ 1− 1 769.0 1.1 (0.3–1.1)(c) 1.3 (1.0–1.8)

ω 1− 0 782.6 23.0 (17.0–31.0)(d) 1.5 (1.3–2.1)

σ(e) 0+ 0 500.0 (300.0–800.0) 3.676 (1.5–5.5) 1.5 (1.1–1.9)

N∆α vertices
π 0− 1 138.03 0.35 0.9 (0.7–1.1)
ρ 1− 1 769.0 20.45 (16.0–28.0) 1.4 (1.2–1.6)

(a) Numbers in parentheses state the range of variation.

(b) g2αNN/4π = (2M/mα)
2f2

αNN/4π is given.

(c) g2ρ/4π is given; fρ/gρ = 6.1.

(d) g2ω/4π is given; fω/gω = 0.

(e) The σ parameters given in the table apply to the T = 1 NN potential; for the T = 0 potential, g2

σ/4π = 2.5064 and mσ = 450MeV are used.

For theoretical physics, it is not uncommon to en-
counter such problems. Typically, the preliminary way
out is to build models. The hope is that reasonably
constructed models may provide insight which may ul-
timately lead to a solution on more fundamental grounds.
The “standard model” for the nuclear force is relativis-
tic meson-exchange. In the past, meson models have been
constructed and shown to describe NN scattering up to
about 1GeV satisfactorily [8,22–31].

However, above 1GeV, there remains a large energy
range where pQCD is still not applicable. Traditionally,
this energy region has been the stepchild of the theoretical
profession. Recently, a large number of precise pp scatter-
ing data up to 2.8GeV have been measured [32–37]. The
obvious question is: Do we understand these data, their
angular and energy dependence? The focus of this paper
will be on the spin observables that are more exclusive
than the spin averaged cross-sections.

This paper is organized as follows. In sect. 2, we
present a typical model that is known to be appropri-
ate for energies up to about 1GeV. In sect. 3, this model
is applied for energies above 1GeV, and some modifica-
tions necessary for those higher energies are introduced.
Section 4 is then devoted to spin observables. We conclude
the paper with sect. 5, where we elaborate on the unsolved
problems of the energy region under consideration.

2 Relativistic meson-exchange model for NN

scattering at intermediate energies

The simplest meson model for the nuclear force is the so-
called one-boson-exchange (OBE) model which takes only
single-particle exchanges into account [38]. Typically, the
mesons with masses below the nucleon mass are included.
Most important, are the following four mesons:

– The pseudoscalar pion with a mass of about 138MeV.
It is the lightest meson and provides the long-range
part of the potential and most of the tensor force.

– The ρ-meson, a 2π P -wave resonance of about
770MeV. Its major effect is to cut down the tensor
force provided by the pion at short range —to a real-
istic size.

– The ω-meson, a 3π resonance of 783MeV and spin
1. It creates a strong repulsive central force of short
range (“repulsive core”) and most of the nuclear spin-
orbit force.

– The σ-boson of about 550MeV. It provides the
intermediate-range attraction necessary for nuclear
binding and can be understood as a simulation of the
correlated S-wave 2π-exchange.

Besides these four bosons, we include also the η(547),
which brings the total number to five. The quantum
numbers characterizing these mesons (like, spin, parity,
isospin) are shown in table 1.

The following Lagrangians describe the coupling of
these mesons to nucleons:

Lpv=−
fps
mps

ψ̄γ5γµψ∂µϕ
(ps), (1)

Ls=−gsψ̄ψϕ(s), (2)

Lv=−gvψ̄γµψϕ(v)µ −
fv
4M

ψ̄σµνψ
(

∂µϕ
(v)
ν −∂νϕ(v)µ

)

, (3)

where M is the nucleon mass and mα a meson mass.

ψ denotes the nucleon and ϕ
(α)
(µ) the meson fields (nota-

tion and conventions as in ref. [39]). For isospin-1 (isovec-
tor) mesons, ϕ(α) is to be replaced by τ · ϕ(α) with τ i

(i = 1, 2, 3) the usual Pauli matrices. ps, pv, s, and v de-
note pseudoscalar, pseudovector, scalar, and vector cou-
plings/fields, respectively. For the pseudoscalar mesons π
and η, we use the pseudovector coupling, eq. (1), as sug-
gested by chiral symmetry. The scalar boson σ couples



K.O. Eyser et al.: Modelling nucleon-nucleon scattering above 1 GeV 107

���������

Fig. 1. One-boson-exchange contributions to the NN interac-
tion. The solid lines represent nucleons and the dashed lines
are mesons.

via the scalar Lagrangian, eq. (2), and the vector mesons
ρ and ω interact through the Lagrangian equation (3).
The coupling constants, gα and fα, are given in table 1 in
terms of g2α/4π and f2α/4π, respectively.

Based upon the above Langrangians, the one-particle-
exchange Feynman diagrams (fig. 1) can be evaluated
straightforwardly (see ref. [8] for details). The OBE poten-
tial is then defined as the sum of the Feynman amplitudes
created from the five mesons:

V̄ =
∑

α=π,η,σ,ρ,ω

V̄α . (4)

Explicit expressions for the Feynman amplitudes, V̄α, can
be found in refs. [8,40]. We note that we modify these
Feynman amplitudes by applying, at each meson-nucleon
vertex, a form factor which has the analytical form

Fα
[

(q′ − q)2
]

=

(

Λ2α −m2
α

Λ2α + (q′ − q)2

)nα

, (5)

where q and q′ denote the nucleon momenta in the center-
of-mass (c.m.) frame in the initial and final state, respec-
tively; and (q′ − q) is the momentum transfer between
the two interacting nucleons. Λα is called the cutoff mass.
We use nα = 1 for all vertices with the exception of the
N∆ρ vertex, where nα = 2 is applied (see below). The
form factor suppresses the contributions from high mo-
mentum transfer which is equivalent to short distances.
This is necessary to make loop integrals (and the solution
of the Lippmann-Schwinger equation) convergent and sug-
gested by the extended (quark) substructure of hadrons.

For the energies to be considered in this study, it
is mandatory to use a relativistic formalism. Relativistic
NN scattering is described by the Bethe-Salpeter equa-
tion [41]. Unfortunately, this four-dimensional equation is
difficult to solve. Therefore, so-called three-dimensional
reductions have been proposed which are more amenable
to numerical solution. We will use the relativistic three-
dimensional Thompson equation [42] which reads

T̄
(

q′, q;
√
s
)

= V̄ (q′, q)

+

∫

d3k V̄ (q′,k)
M2

E2
k

1√
s− 2Ek + iε

T̄
(

k, q;
√
s
)

, (6)

where T̄ denotes the invariant scattering amplitude and√
s is the total energy in the c.m. frame;

√
s = 2Eq with

Eq ≡
√

q2 +M2 and q ≡ |q| the momentum of one nu-
cleon in the c.m. frame, which is related to the lab. energy
of the projectile by Tlab = 2q2/M . It is convenient to de-
fine

T (q′, q) =
M

Eq′
T̄ (q′, q)

M

Eq
(7)

and

V (q′, q) =
M

Eq′
V̄ (q′, q)

M

Eq
. (8)

With this, we can rewrite eq. (6) as

T
(

q′, q;
√
s
)

= V (q′, q)

+

∫

d3k V (q′,k)
1√

s− 2Ek + iε
T
(

k, q;
√
s
)

(9)

which resembles a Lippmann-Schwinger equation with rel-
ativistic energies.

In the framework of the relativistic three-dimensional
reduction of the Bethe-Salpeter equation, eq. (6), applied
here, the OBE potential is real at all energies and, there-
fore, suitable only for NN scattering below the inelastic
threshold. Above Tlab ≈ 290MeV, pions can be produced
inNN collisions. A model that is expected to have validity
at intermediate energies needs to take the inelasticity due
to pion production into account. It is well known that,
below about 1.5GeV, pion production proceeds mainly
through the formation of the ∆(1232)-isobar which is a
pion-nucleon resonance with spin and isospin 3/2. The
next higher resonance is the N∗(1440), also known as
Roper resonance, with spin and isospin 1/2 [43]. This res-
onance was included in a meson model for NN scattering
up to 2GeV constructed by Lee [44] and found to con-
tribute less than 1mb to the inelastic cross-section even at
2GeV. A recent exclusive measurement of two-pion pro-
duction in pp scattering at 775MeV finds cross-sections
that can be attributed to the Roper resonance of less than
0.1mb [45]. Thus, below 2GeV, the N ∗(1440) is much less
important than the ∆(1232). Therefore, we introduce only
the ∆ as an additional degree of freedom. Consequently,
we have now, besides the NN channel, two more two-
baryon channels, namely, N∆ and ∆∆.

Since all channels have baryon number two, transi-
tions between these channels are allowed, i.e., the channels
“couple”. Mathematically, this produces a system of cou-
pled equations for the scattering amplitudes. In operator
notation, one can write:

Tij = Vij +
∑

k

Vik gk Tkj , (10)

where each subscript i, j, and k denotes a two-baryon
channel (NN ,N∆, or∆∆), and gk is the appropriate two-
baryon propagator. In principle, there are nine transition
potentials, Vij , which reduce to six due to time-reversal.
Three of them, namely VN∆,N∆, VN∆,∆∆, and V∆∆,∆∆,
involve ∆∆α vertices, where α is a non-strange meson.
Exploiting the usual symmetries, such vertices can be con-
structed; however, there is no way to test empirically if the
assumptions about these vertices are realistic. Therefore,
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Fig. 2. Two-meson-exchange box-diagram contributions to the
NN interaction involving nucleons (solid lines) and ∆-isobars
(double lines). The dashed lines represent π and ρ exchange.

such constructs are beset with large uncertainties, which
is why we omit them. The consequence is that the system
of coupled equations, eq. (10), decouples and the T -matrix
of NN scattering, T ≡ TNN,NN , is the solution of just one
integral equation:

T = Veff + Veff gNN T, (11)

with

Veff = VNN,NN + VNN,N∆ gN∆ VN∆,NN

+VNN,∆∆ g∆∆ V∆∆,NN , (12)

where VNN,NN is the V given in eq. (8) which is based
upon eq. (4) and shown in fig. 1. The last two terms on
the r.h.s. of the above equation are depicted in fig. 2.

Because of isospin conservation, the transition poten-
tials containing N∆α vertices can only involve isovector
mesons. Thus,

VNN,N∆ =
∑

α=π,ρ

V α
NN,N∆ , (13)

VNN,∆∆ =
∑

α=π,ρ

V α
NN,∆∆ . (14)

The amplitudes, V α
NN,N∆ and V α

NN,∆∆, with α = π, ρ, are
derived from the interaction Langrangians:

LN∆π=−
fN∆π
mπ

ψ̄Tψµ∂µϕ
(π) +H.c., (15)

LN∆ρ= i
fN∆ρ
mρ

ψ̄γ5γµTψν
(

∂µϕ
(ρ)
ν −∂νϕ(ρ)

µ

)

+H.c., (16)

where ψµ is a Rarita-Schwinger field [46–48] describing
the (spin- 32 ) ∆-isobar and T denotes an isospin transition

operator that acts between isospin- 12 and isospin- 32 states.
H.c. stands for Hermitian conjugate. The transition po-
tentials V π

NN,N∆ and V π
NN,∆∆ can be found in ref. [49]

and V ρ
NN,N∆ and V ρ

NN,∆∆ are given in ref. [50]. We use
these relativistic transition potentials in conjunction with
static meson propagators that take the delta-nucleon mass
difference into account. The vertices involved in the tran-
sition potentials are multiplied with form factors of the
type eq. (5).
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Fig. 3. Phase shifts and inelasticity parameters of NN scatter-
ing below 1GeV laboratory energy. The solid curve represents
the predictions by the model described in sect. 2. The solid dots
show the Nijmegen multi-energy np phase shift analysis [51],
and the open circles are the GWU (formerly VPI) single-energy
np analysis SP03 [52]. Arndt-Roper conventions are used for
the phase parameters [53].
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Fig. 3 (Continued.)
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Fig. 3 (Continued.)

The two-baryon propagators involved in eqs. (11)
and (12) are

gNN =
1√

s− 2Ek + iε
, (17)

gN∆ =
1

√
s− Ek − Ẽ∆

k (
√
s )

, (18)

g∆∆ =
1

√
s− 2Ẽ∆

k (
√
s )

, (19)

where Ẽ∆
k (
√
s ) =

√

k2 + M̃2
∆(
√
s ) with M̃∆(

√
s ) =

M∆−iΓ (
√
s )/2 a complex ∆-mass. The real part of the ∆

mass is the well-known physical mass, M∆ = 1232MeV.
The imaginary part, which is associated with the decay
width of the∆-isobar, creates the inelasticity in our model
and simulates pion production. It is calculated from the
self-energy of the∆-isobar that is obtained from a solution
of the Dyson equation in which the ∆ is coupled virtually
to the πN decay channel [26,27,29]. Γ (

√
s ), is energy de-

pendent and the threshold is
√
s = 2M+mπ for diagrams

with one intermediate ∆ state and
√
s = 2M + 2mπ for

two intermediate ∆. Below these thresholds, Γ (
√
s ) van-

ishes. Note that, due to isospin conservation, N∆ dia-
grams contribute only in isospin T = 1 NN -states, while
∆∆ diagrams contribute to all states. Consequently, in
T = 0, only double-∆ diagrams contribute (besides the
usual OBE contributions, fig. 1). This explains the thresh-
olds for inelasticity seen in fig. 3.
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Fig. 4. Mixing parameters for J ≤ 4 and laboratory energies
below 1GeV. The solid curve represents the prediction by the
model described in sect. 2. The solid dots show the results
from the Nijmegen multi-energy np analysis [51], and the open
circles are the GWU (formerly VPI) single-energy np analysis
SP03 [52].

The model developed so far consists of the diagrams
displayed in figs. 1 and 2 (using the complex propaga-
tors discussed above). These diagrams make up the “ef-
fective” NN potential, eq. (12), that is applied in the
scattering equation, eq. (11), to determine the NN T -
matrix, from which phase parameters and observables
can be calculated. It is well known that models of this
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kind [26,27,29,54] are able to describe NN scattering up
to about 1GeV in semi-quantitative terms. Using the pa-
rameters listed in table 1, phase shifts and inelasticity pa-
rameters are predicted as shown in fig. 3 and mixing pa-
rameters as in fig. 4. It is seen that several phase shifts are
predicted quantitatively, notably the S waves; others are
semi-quantitative, like the P waves which, typically, show
too much attraction at intermediate energies. The cusps
that are known to be the signature of the ∆ threshold [55]
also show up clearly: the shape of the 1D2 phase shift is
well reproduced while, in 3F3 and

3P2, only the trends are
right. Inelasticities are by-and-large described well, but
in the crucial cases, namely, 1D2 and 3F3 the inelasticity
is predicted too small. This is a well-known problem [26,
27,29]. However, overall we perceive the agreement be-
tween predicted and empirical phase parameters displayed
in figs. 3 and 4 as sufficient to conclude that we have a
satisfactory understanding of NN scattering up to about
1GeV in terms of a relativistic meson model extended by
the ∆(1232) resonance.

We note that there are other models published in the
literature that could be perceived as alternative starting
points for the theoretical work of this paper. For example,
the model of ref. [44] provides a slightly better fit than
ours. However, this model is nonrelativistic which is inap-
propriate for, particularly, the energies to be considered in
the next section. Also the models of ref. [56] may appear
attractive because they reproduce the NN phase shifts
almost perfectly. However, this perfect fit is achieved by
adjusting an optical potential individually for each partial
wave, making it difficult to reveal the underlying physics.

3 The energy regime above 1 GeV

With this section, we will start to investigate the issue to
which extent the relativistic meson model of the previous
section can be stretched beyond 1GeV. We will consider,
first, the most inclusive observables, namely, total cross-
sections. The predictions for the total elastic and the to-
tal (i.e., elastic plus inelastic) cross-sections are shown in
fig. 5 for energies up to 5GeV laboratory energy [57]. From
the figure, one can make two important observations:

– The predicted inelasticity (difference between the
dashed and solid curve in fig. 5) is substantially too
small above 1GeV.

– The predicted elastic cross-section rises with energy
while, empirically, it drops.

The lack of inelasticity is not unexpected since, for Tlab >
1GeV, the effectiveness of the ∆(1232) resonance is di-
minishing, while other inelastic processes enter the picture
which are not included in our model. However, the num-
ber of inelastic channels that open above 1GeV increases
so rapidly with energy [43] that it would be inefficient to
take them into account one by one. Except for the shoulder
around Tlab ≈ 800MeV which is due to the ∆ resonance,
the inelastic cross-section is smooth and does not show
any structures that would be indicative for the outstand-
ing role of another meson-nucleon resonance or a particu-
lar inelastic channel. Hence, a picture of many overlapping
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Fig. 5. Total cross-section (solid line) and total elastic cross-
section (dashed line) as predicted by the relativistic meson
model presented in sect. 2. The experimental data for total
cross-sections are represented by solid symbols, while open
symbols show the elastic-cross-section data.

resonances and inelastic channels emerges, which suggests
that further inelasticity can be pragmatically described by
a smooth optical potential.

In configuration space (r-space) calculations, the fol-
lowing form has been used for a nonrelativistic optical
potential [56]:

Ṽopt(r, s) =
[

Ṽ0(s) + iW̃0(s)
]

exp

(

− r
2

a2

)

, (20)

where, as before, s denotes the square of the total c.m.
energy. The Gaussian shape is suggested by the geometri-
cal picture proposed by Chou and Yang [58], in which two
colliding nucleons are described as extended objects made
from some kind of hadronic matter that has a distribution
similar to the charge distribution. The proton electromag-
netic form factor is well represented by a Gaussian.

Since we work in momentum space, we Fourier-
transform eq. (20), yielding

V̂opt(k, s)=

(√
πa

2π

)3
[

Ṽ0(s)+iW̃0(s)
]

exp

(

−k
2a2

4

)

.

(21)
This is a nonrelativistic scalar. However, our approach is
relativistic and, therefore, all contributions must have a
proper Lorentz-Dirac structure. In analogy to the non-
relativistic approach, the obvious choice is a Lorentz
scalar [59] which we define as follows (using the formalism
of refs. [8] and [40]):

〈

q′λ′1λ
′
2

∣

∣V̄opt
∣

∣qλ1λ2
〉

=

V̂opt(k, s)
[

ū
(

q′, λ′1
)

u
(

q, λ1
)] [

ū
(

−q′, λ′2
)

u
(

−q, λ2
)]

,(22)

where λ1, λ2 (λ′1, λ
′
2) denote the helicities of the two in-

going (outgoing) nucleons and q (q′) are the correspond-
ing relative momenta in the c.m. system; k ≡ |q′ − q |
is the magnitude of the momentum transfer between
the interacting nucleons. The Dirac spinors in helicity
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representation are given by

u(q, λ1) =

√

Eq +M

2M

(

1
2λ1|q |
Eq+M

)

|λ1〉, (23)

u(−q, λ2) =
√

Eq +M

2M

(

1
2λ2|q |
Eq+M

)

|λ2〉, (24)

which are normalized such that

ū(q, λ)u(q, λ) = 1, (25)

with ū = u†γ0.
Instead of fitting the parameters of the optical poten-

tial, Ṽ0(s) and W̃0(s), separately for various single en-
ergies [56,59], we find it physically more reasonable to
choose a smooth, analytic function of s with the correct
high-energy behavior built in:

Ṽ0(s)+ iW̃0(s)=

{

0 for Tlab≤T (0)lab ,
(

s−s0
4M2

)

[V0+iW0] for Tlab>T
(0)
lab ,

(26)

where s0 = 2M(2M + T
(0)
lab ) and T

(0)
lab = 0.8GeV. This

parametrization implies that the optical potential is pro-
portional to s for large energies (s À s0) which leads
to constant total cross-section predictions in the energy
range 10 to 100GeV, consistent with experiment [43].

In summary, to generate the additional inelasticity re-
quired for the total cross-sections above about 1GeV, we
add to the model developed in sect. 2 the relativistic op-
tical potential defined by eqs. (21), (22) and (26).

We now turn to the other deficiency that we are observ-
ing in fig. 5, namely, the rise of the elastic cross-section
with energy, which contradicts experiment. One-particle
exchange creates amplitudes that have the basic mathe-
matical structure

V̄α ∝
sJ

t−m2
α

, (27)

where J denotes the spin of the exchanged particle and
t is the square of its four-momentum. The vector mesons
ρ and ω have J = 1 and, therefore, create total cross-
sections that rise with s. This is the basic reason for the
rising cross-sections seen in fig. 5.

This failure of the one-particle exchange picture at
high energies has been known since the late 1950s, when
data of sufficient energy became available to reveal this
problem. In an attempt to solve this problem, Regge the-
ory [60–62] was developed in the early 1960s which, in-
deed, is able to reproduce the general energy behavior of
two-body cross-sections, correctly. In the Regge model,
one-particle exchange is replaced by the exchange of a
Regge pole, which is an infinite series of particles with
the same spin, isospin, and strangeness, aligned along a
Regge trajectory. Regge trajectories are named by their
first, best-known family member: there exists a ρ and an
ω trajectory.
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Fig. 6. Total cross-section (solid line) and total elastic cross-
section (dashed line) as predicted by the relativistic meson
model as modified in sect. 3. Data as in fig. 5.

Based upon these historical developments, it might
be appealing to replace the one-rho and one-omega ex-
changes in our model by the corresponding Regge tra-
jectories. However, there are reasons why we should not
resort to such drastic measures. From a modern point of
view, Regge theory is essentially a phenomenology for very
high energies. It is most appropriate above about 10GeV
which is beyond the energies that we are intersted in. This
fact reveals the greatest dilemma of the energy regime be-
tween 1 and 10GeV: there exist well-tested models below
1GeV (meson model) and above 10GeV (Regge model),
however in-between, the established models are partially
inadequate and no alternatives have been proposed.

Another problem with Regge theory is that it does
not make any predictions for the spin-dependence of the
interaction, which is one focus of this study (see below).

For the reasons discussed, we will not switch to Regge
theory. Instead, we will modify our model in the spirit
of Regge theory. Of the Regge trajectories, we will only
keep the first family member. The one-particle exchange
amplitude of this first member will be modified such that
the main effect of the rest of the trajectory is taken into
account. As discussed, this main effect is that it removes
the wrong energy behavior from the amplitude. Thus, we
apply to the one-omega and one-rho exchange amplitudes
a factor that divides the wrong energy dependence out:

V̄α 7−→
s0
s
V̄α , (28)

for α = ρ, ω and s > s0 with s0 as defined below eq. (26).
For s ≤ s0, there are no changes. The modification in
eq. (28) is applied to the ρ and ω exchanges of VNN,NN
and the ρ exchanges of VNN,N∆ and VNN,∆∆ (cf. eq. (12)).

Including the optical potential, eq. (22), and the mod-
ification of the vector meson amplitudes, eq. (28), we ob-
tain the total cross-section predictions displayed in fig. 6.
The elastic cross-section now shows the correct energy be-
havior and the inelasticity (and the total cross-section) is
of the right size and energy dependence. Thus, based upon
a few physically reasonable assumptions, it is fairly easy
and straightforward to describe the pp total cross-sections
above 1GeV.
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Fig. 7. Observables of pp scattering as denoted for five energies between 400 and 2500MeV lab. energies. The dashed curve
represents the predictions by the model of sect. 2, while the solid curve includes the modifications of sect. 3. The dotted curve
is based upon the GWU (formerly VPI) phase shift analysis SP03. Data from refs. [32–34].

4 Spin observables

In this section, we turn to pp spin observables. We will
compare predictions by the model developed in the previ-
ous two sections (and variations thereof) to data for five
representative energies in the range 400MeV to 2500MeV.
Besides differential cross-sections, dσ/dΩ, and analyzing
powers, AN , we will consider the spin correlation coef-
ficients ANN , ASS , ASL, and ALL, for which (except
for ALL) precise data have been taken by the EDDA
group [32–34], and for ANN , ASL at SATURNE [35,37].
Since the differences between the two experimental data
sets are small as compared to the difference between the-
ory and experiment, we will subsequently compare only to
the EDDA data.

The predictions by the relativistic meson model pre-
sented in sect. 2, as modified in sect. 3, are shown by
the solid curve in fig. 7. The dashed curve in the figure
is obtained when the optical potential, eq. (22), and the
corrections to vector meson, eq. (28), are left out. Finally,
the dotted curve is based upon the GWU (formerly VPI)
phase shift analysis SP03 [52]. Since a phase shift analysis
is just an alternative way of representing data, the dotted
curve follows, in general, the data included in fig. 7. The
exception is ALL, where no data exist and where, there-
fore, the analysis represents the only empirical information
to compare with.

Since we expect the meson model to be right at least
for low energies, it is comforting to see that at 400MeV
there is generally good agreement between theory and
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Fig. 7 (Continued.)

experiment for all observables shown. Consistent with the
predictions for total cross-sections discussed in sect. 3,
the differential cross-sections come out too large above
1GeV when the modifications introduced in sect. 3 are
not applied (dashed curve). Including those modifications
(solid curve) yields a better agreement for all energies up
to 2.5GeV, for differential cross-sections.

However, for spin observables, the agreement is much
less satisfactory. Already at 800MeV, the analyzing power
is predicted substantially too high, which is probably as-
sociated with the fact that the 3P2 phase shift is predicted
too large above 650MeV (cf. fig. 3); note that only spin-
triplet partial waves enter the amplitudes describing AN .

At higher energies, the corrections necessary to im-
prove the cross-sections enhance AN contrary to the data.
So, overall, the analyzing power is predicted persistently
too large.

In the case of the spin correlation parameters, the cor-
rection applied to vector-meson exchange, eq. (28), and
the optical potential provide effects that point in the right
direction. Nevertheless, the best one can say is that the-
ory and experiment agree in the trends that the spin cor-
relation coefficients show as a function of angle. But, in
quantitative terms, there are large discrepancies.

The parameters of our model are the meson-
baryon coupling constants and the cutoff masses, which
parametrize the meson-baryon form factors. With the ex-
ception of the πNN and πN∆ coupling constants, these
parameters are only losely constrained by information
from other sources. Consequently, the parameter set that
we have used so far is not the only choice that can be
made. Therefore, we have varied all parameters within
the ranges given in table 1. These ranges represent ed-
ucated estimates of the uncertainties. The result of this
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Fig. 8. The solid curve represents the prediction by a variation of our model that yields an improved fit of AN at 1.8GeV. The
dashed curve is identical to the solid curve of fig. 7. Dotted curve and data as in fig. 7.

very comprehensive investigation of a systematic varia-
tion of all parameters can be summarized as follows: It is
not possible to obtain a fit of all observables at all energies
considered that is substantially better than the one shown
in fig. 7.

To obtain further insight into the nature of the prob-
lem, we have investigated the question, if it is at least
possible to fit single observables at single energies. We se-
lected a few representative cases and found for all of them
that it was, indeed, possible to find a combination of pa-
rameters that resulted in a good fit of the single observable
chosen. To illustrate this point, we show in fig. 8 the case
where the prediction for AN at 1.8GeV is substantially
improved. However, it is clearly seen that the fit of all the
other observables is now, in general, worse than in fig. 7,
including AN at lower energies. Thus, the quantitative fit
of just one observable at one energy and for a limited

range of angles cannot be perceived as a confirmation of
the validity of the meson model at high energies [63]. On
the other hand, the fact that all observables can be fitted
separately by some individually adjusted combination of
parameters implies that our model does contain all the
types of spin-dependent forces necessary to describe the
NN amplitudes. What fails is the energy and angle de-
pendence. While for low energies (below ≈ 0.8GeV) the
meson model generates the correct energy dependence for
the strength of the various spin-dependent components,
this energy dependence becomes increasingly wrong when
proceeding to higher energies.

5 Conclusions

In this paper, we have studied NN scattering above
1GeV laboratory energy. We started from a model that
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is based upon relativistic meson-exchange, complemented
by the ∆(1232)-isobar, and reproduces NN scattering up
to about 1GeV satisfactorily. We have then extrapolated
this model above 1GeV. At those higher energies, char-
acteristic deficiencies in the total and differential cross-
sections show up that are easy to fix. The lack of inelas-
ticity is mended by introducing an optical potential of the
shape of the proton form factor. The well-known wrong
high-energy behavior of vector-meson exchange becomes
noticable already around 1.2GeV. In the spirit of Regge
theory, we apply a factor s0/s to vector mesons with the
consequence that the elastic cross-sections and their en-
ergy behavior are predicted correctly.

An important focus of our study have been spin-
observables of pp scattering. Due to recent experiments
conducted by the EDDA group [33,34], data on spin
correlation coefficients (besides analyzing powers) up to

2.5GeV are now available for a broad range of angles.
Comparison of our predictions with these data confirms
the well-known fact that a correct reproduction of cross-
sections by no means implies a correct description of spin
observables. Even the “simplest” spin observable, namely,
the analyzing power AN , poses a challenge to theory which
predicts AN persistently too large. Concerning the more
sophisticated spin correlation parameters, the only en-
couraging statement that can be made is that the charac-
teristic trends of these observables as a function of angle
come out about right. But there is no quantitative agree-
ment. Varying the parameters of the model (coupling con-
stants and cutoff parameters) over a wide range does not
improve the overall quality of the description of the data.

In conclusion, we do not have a quantitative under-
standing of the spin dependence of the NN interaction
above 1GeV. The meson model, which is so successful
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at low energies, becomes increasingly inadequate above
1GeV. This fact is revealed most clearly by spin observ-
ables.

It is tempting (since plausible) to interpret the gradual
failure of the meson model with increasing energy as an
indication that pQCD is becoming the valid approach at
higher energy. Unfortunately, this suggestion is not cor-
rect. The implications of pQCD for NN elastic scattering
have been worked out carefully in ref. [64] and the predic-
tion clearly is

AN = 0 (29)

at all angles. This is not what we see in the data. In fact,
AN was measured up to laboratory energies of 28GeV by
Alan Krisch and the Michigan group [65] and there are no
indications for a decline of AN even at those large energies.

Assuming massless, effectively free quarks, the helic-
ities of the quarks are conserved, which implies for the
spin-correlations parameters [64]:

ANN = −ASS , (30)

ASL = 0 , (31)

for all angles. Applying the quark-interchange model to
this scenario, yields the specific predictions [64]

ANN (90◦) =
1

3
, (32)

ALL(90
◦) = ASS(90

◦) = −1

3
, (33)

which (as it should) satisfies the model-independent
sum rule:

ANN (90◦)−ALL(90◦)−ASS(90◦) = 1, (34)

where the angle is measured in the c.m. system.
Accidentally, the data at 800MeV and above displayed

in fig. 7 agree roughly with eqs. (30) and (31). However,
we should not interpret this as a signature of pQCD. The
Michigan group [65] measured ANN at 90◦ up to 12GeV
and found strong variations with energy, and a value of
about 0.6 at 12GeV which disagrees by a factor two with
eq. (32). Moreover, the best-founded implication of pQCD
is a vanishing analyzing power and, therefore, if this con-
dition is not met, we are not in pQCD territory.

In lack of a calculable high-energy theory, one may con-
sider to resort to traditional high-energy phenomenology.
The Regge model complemented by Pomeron exchange
is the most successful phenomenology for the description
of hadron-hadron cross-sections above 10GeV laboratory
energy [66,67]. However, the main problem that we are
facing in this study are spin observables. To our knowl-
edge, the exact implications of Regge theory for the spin
dependence of the NN interaction has never been worked
out, since most of the work on Regge theory was done in
the 1960s when polarization data at high energy were not
available. The work by Rijken [68] on low-energy implica-
tions of Regge theory suggests that Regge theory predicts
a spin dependence similar to the OBE model. If true, then
our model contains already all the spin dependence that a

Regge theory would produce. On the other hand, one may
also raise objections concerning the use of Regge theory:
In general, the Regge model is perceived as appropriate in
the energy regime above 10GeV and, so, it is questionable
if it is the right phenomenology for energies at a few GeV
which is our focus.

In summary, the energy region between 1 and 10GeV
poses a serious problem: the energies are too high for typ-
ical nuclear-physics approaches (like chiral perturbation
theory or meson models) and too low for typical high-
energy theories. In this sense, the region 1–10GeV is the
true “intermediate energy” region. The transition char-
acter of this region may be the crucial underlying rea-
son why, so far, any attempt to explain the data has just
opened Pandora’s Box.

In the late 1970s and early 1980s, when the first mea-
surements by Alan Krisch and co-workers [65] of unexpect-
edly large analyzing powers and transvers spin-correlation
coefficients in pp scattering at high energies and large an-
gles had become known to the community, a flurry of theo-
retical activity evolved [64,63,69,59,70]. However, none of
the many theoretical papers really solved the problem of
the spin-dependence of the NN interaction at higher ener-
gies and, after a while, the community simply lost interest
in the subject. With the new data on spin-correlation co-
efficients [34] the problem is more apparent than ever. The
fact that we do not have a precise understanding of the
NN interaction above 1GeV is a serious problem that de-
serves the attention of the community. We need new ideas
and much more theoretical work.
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